Fractal dimension of a random invariant set
نویسندگان
چکیده
In recent years many deterministic parabolic equations have been shown to possess global attractors which, despite being subsets of an infinite-dimensional phase space, are finite-dimensional objects. Debussche showed how to generalize the deterministic theory to show that the random attractors of the corresponding stochastic equations have finite Hausdorff dimension. However, to deduce a parametrization of a ‘finite-dimensional’ set by a finite number of coordinates a bound on the fractal (upper box-counting) dimension is required. There are non-trivial problems in extending Debussche’s techniques to this case, which can be overcome by careful use of the Poincaré recurrence theorem. We prove that under the same conditions as in Debussche’s paper and an additional concavity assumption, the fractal dimension enjoys the same bound as the Hausdorff dimension. We apply our theorem to the 2d Navier–Stokes equations with additive noise, and give two results that allow different long-time states to be distinguished by a finite number of observations. 2005 Elsevier SAS. All rights reserved. Résumé Au cours des dernières années, il a été démontré que de nombreuses équations paraboliques déterministes possèdaient des attracteurs globaux qui, tout en étant des sous-ensembles d’un espace de dimension infinie, sont en fait des objets de dimension finie. Debussche a montré comment généraliser la théorie déterministe pour établir que les attracteurs aléatoires des équations stochastiques correspondantes ont une dimension de Hausdorff finie. Cependant, pour déduire une paramétrisation d’un ensemble de dimension finie par un nombre fini de coordonnées, on a besoin d’un majorant de * Corresponding author. E-mail address: [email protected] (J.C. Robinson). 0021-7824/$ – see front matter 2005 Elsevier SAS. All rights reserved. doi:10.1016/j.matpur.2005.08.001 270 J.A. Langa, J.C. Robinson / J. Math. Pures Appl. 85 (2006) 269–294 la dimension fractale. Des problèmes nontriviaux existent pour généraliser à ce cas les techniques de Debussche ; ils peuvent être surmontés en utilisant le théorème de récurrence de Poincaré. Sous les mêmes conditions que dans l’article de Debussche, nous démontrons que la dimension fractale a une même majorante que la dimension de Hausdorff. Nous appliquons notre théorème aux équations de Navier–Stokes avec bruit additif et nous présentons deux résultats qui, au moyen d’un nombre fini d’observations, permettent de distinguer deux états donnés sur des temps longs. 2005 Elsevier SAS. All rights reserved.
منابع مشابه
Hausdorff Dimension of Random Fractals with Overlaps
The term fractal was first introduced by Mandelbrot to denote sets with highly irregular structures. Mandelbrot and others have then used fractals to model various natural phenomena (for example, [19, 2]). A mathematical development of fractals via the theory of (non-random) self-similar sets and measures was given by Hutchinson [12]. A family of contractive maps {Sj}^ on E m is called an itera...
متن کاملRandom soups, carpets and fractal dimensions
We study some properties of a class of random connected planar fractal sets induced by a Poissonian scale-invariant and translation-invariant point process. Using the second-moment method, we show that their Hausdorff dimensions are deterministic and equal to their expectation dimension. We also estimate their low-intensity limiting behavior. This applies in particular to the “conformal loop en...
متن کاملImproving security of double random phase encoding with chaos theory using fractal images
This study presents a new method based on the combination of cryptography and information hiding methods. Firstly, the image is encoded by the Double Random Phase Encoding (DRPE) technique. The real and imaginary parts of the encoded image are subsequently embedded into an enlarged normalized host image. DRPE demands two random phase mask keys to decode the decrypted image at the destination. T...
متن کاملOn the Fractal Dimension of Invariant Sets; Applications to Navier–stokes Equations
A semigroup St of continuous operators in a Hilbert space H is considered. It is shown that the fractal dimension of a compact strictly invariant set X (X b H, StX = X) admits the same estimate as the Hausdorff dimension, namely, both are bounded from above by the Lyapunov dimension calculated in terms of the global Lyapunov exponents. Applications of the results so obtained to the two–dimensio...
متن کاملInvariant Measures for the n-Dimensional Border Collision Normal Form
The border collision normal form is a continuous piecewise affine map of R n with applications in piecewise smooth bifurcation theory. We show that these maps have absolutely continuous invariant measures for an open set of parameter space and hence that the attractors have Haus-dorff (fractal) dimension n. If n = 2 the attractors have topological dimension two, i.e. they contain open sets, and...
متن کاملHausdorff dimension of limsup random fractals
In this paper we find a critical condition for nonempty intersection of a limsup random fractal and an independent fractal percolation set defined on the boundary of a spherically symmetric tree. We then use a codimension argument to derive a formula for the Hausdorff dimension of limsup random fractals.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004